4 research outputs found

    Temporally programmed disassembly and reassembly of C3Ms

    No full text
    \u3cp\u3eResponsive materials, which can adapt and operate autonomously under dynamic conditions, are a stepping stone towards functional, life-like systems inspired by fueled self-assembly processes in nature. Complex coacervate core micelles (C3Ms) comprising oppositely charged macromolecules constitute a novel class of polymeric micelles ideally suited for use as responsive nanoscopic delivery vehicles of hydrophilic and hydrophobic cargo. To fully exploit their potential, it is important that the C3Ms form and fall apart in an autonomous fashion as orchestrated by dynamic cues in their environment. Herein a means to temporally program the self-regulated C3M coassembly pathway, using a modulated base-catalyzed feedback system, is presented. Incorporated in the C3Ms is a pH responsive polyfluorene-based conjugated polyelectrolyte (CPF) as a building block and trace amounts of a molecular sensor (doxorubicin HCl) as cargo, both of which report on micellar coassembly and disassembly via binding-induced fluorescence quenching. CPF additionally reports on the pH of its microenvironment as its pH-dependent conformational states are mirrored in the transitions of its vibronic bands. This experimental design enables one to monitor solution pH, C3M disassembly and reassembly, as well as cargo release and recapture noninvasively in a closed system with real time florescence experiments.\u3c/p\u3

    Complex coacervate core micelles containing Poly(vinyl alcohol) inhibit ice recrystallization

    No full text
    Complex coacervate core micelles (C3Ms) form upon complexation of oppositely charged copolymers. These co‐assembled structures are widely investigated as promising building blocks for encapsulation, nanoparticle synthesis, multimodal imaging, and coating technology. Here, the impact on ice growth is investigated of C3Ms containing poly(vinyl alcohol), PVA, which is well known for its high ice recrystallization inhibition (IRI) activity. The PVA‐based C3Ms are prepared upon co‐assembly of poly(4‐vinyl‐N‐methyl‐pyridinium iodide) and poly(vinyl alcohol)‐block‐poly(acrylic acid). Their formation conditions, size, and performance as ice recrystallization inhibitors are studied. It is found that the C3Ms exhibit IRI activity at PVA monomer concentrations as low as 1 × 10−3m. The IRI efficacy of PVA‐C3Ms is similar to that of linear PVA and PVA graft polymers, underlining the influence of vinyl alcohol monomer concentration rather than polymer architecture

    Probing nanoscale coassembly with dual mechanochromic sensors

    No full text
    \u3cp\u3eAttractive electrostatic forces between polymers can be exploited to create well-defined and responsive nanoscale structures. In the process of charge-driven coassembly, the polymers involved undergo subtle conformational changes. However, ascertaining these conformational transitions, and relating this to the nanostructures that are formed, has remained elusive to date. Here it is shown how the force-optical response of tailored mechanochromic polymers can be used to detect structural transitions that occur at the nanoscale during assembly. It is shown that at low-charge stoichiometry, electrostatic binding causes individual macromolecules to stretch and stiffen. Remarkably, at stoichiometries close to full charge compensation a gradual transition from single molecular complexes to multimolecular micelles is observed. Moreover, the same macromolecular sensors reveal how the assembly pathways are fully reversible as the binding strength is weakened. These results highlight how mechanochromic polymer sensors can be used to detect the molecular transitions occur during supramolecular structure formation with high precision.\u3c/p\u3

    Equivalent pathways in melting and gelation of well-defined biopolymer networks

    No full text
    \u3cp\u3eWe use multiple particle tracking microrheology to study the melting and gelation behavior of well-defined collagen-inspired designer biopolymers expressed by the transgenic yeast P. Pastoris. The system consists of a hydrophilic random coil-like middle block and collagen-like end block. Upon cooling, the end blocks assemble into well-defined transient nodes with exclusively 3-fold functionality. We apply the method of time-cure superposition of the mean-square displacement of tracer beads embedded in the biopolymer matrix to study the kinetics and thermodynamics of approaching the gel point from both the liquid and the solid side. The melting point, gel point, and critical relaxation exponents are determined from the shift factors of the mean-square displacement and we discuss the use of dynamic scaling exponents to correctly determine the critical transition. Critical relaxation exponents obtained for different concentrations in both systems are compared with the currently existing dynamic models in literature. In our study, we find that, while the time scales of gelation and melting are different by orders of magnitude, and show inverse dependence on concentration, that the pathways followed are completely equivalent. (Figure Presented).\u3c/p\u3
    corecore